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Abstract The electron density n(r,t), which is the central

tool of time-dependent density functional theory, is pres-

ently considered to be derivable from a one-body time-

dependent potential V(r,t), via one-electron wave functions

satisfying a time-dependent Schrödinger equation. This is

here related via a generalized equation of motion to a Dirac

density matrix now involving t. Linear response theory is

then surveyed, with a special emphasis on the question of

causality with respect to the density dependence of the

potential. Extraction of V(r,t) for solvable models is also

proposed.
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1 Introduction

Early work on time-dependent density functional theory

can be traced back at least to 1972 [1–3] followed by

various studies [4–7] in the 1970s/early 1980s, and

culminating in the important proposal of Runge and Gross

(RG) [8]. In essence, the RG argument generalizes the

Hohenberg–Kohn theorem [9] to time-dependent external

potentials. Though parts of this important study were

questioned in [10], the RG work is widely accepted as the

basis for the assertion that, for a specified initial state,

there is a unique correspondence between the time

dependent density n(r,t) and the external potential

Vext(r,t). This points the way to construct a time-depen-

dent extension V(r,t) of a static Slater–Kohn–Sham

(SKS) like potential V(r) [11, 12] which will then gene-

rate a Slater determinant of non-interacting electron wave

functions, /i(r,t) say, satisfying the time-dependent

Schrödinger equation

� �h

2m
r2 þ Vðr; tÞ

� �
/iðr; tÞ ¼ i�h

o

ot
/iðr; tÞ; ð1Þ

with a specified determinant at time t = 0. Then the

electron density n(r,t) introduced above is constructed,

formally exactly for N electrons, as

nðr; tÞ ¼
XN

i

/�i ðr; tÞ/iðr; tÞ: ð2Þ

Of course, formal exactitude requires precise knowledge of

the one-body potential V(r,t) in Eq. 1. At the time of

writing, such knowledge is limited for the key exchange

and correlation contributions entering V (see also Eq. 9

below). These can be formally constructed [13–15], and

perturbative approaches that converge on their exact form

are also known [16–18]. In practical terms, however,

accurate exchange-correlation functionals beyond the local

density approximation in space and time are still elusive

and remain a topic of general interest.

Dedicated to Professor Sandor Suhai on the occasion of his 65th

birthday and published as part of the Suhai Festschrift Issue.

T. A. Niehaus (&)

Bremen Center for Computational Materials Science,

Am Fallturm 1a, 28359 Bremen, Germany

e-mail: thomas.niehaus@bccms.uni-bremen.de

N. H. March

Department of Physics, University of Antwerp,

Antwerp, Belgium

N. H. March

Oxford University, Oxford, England

123

Theor Chem Acc (2010) 125:427–432

DOI 10.1007/s00214-009-0578-0



2 The challenge of Schirmer and Dreuw [10] to the RG

arguments, and some responses

This is the point to return to the work of [10]. This study

contains serious criticism levelled against the very foun-

dations of TDDFT (articles [19–22] are also concerned

with the basis of the theory). In [10], the variational basis

of TDDFT proposed by Runge and Gross [8] was not only

challenged but seemingly refuted. To be more specific,

Schirmer and Dreuw claimed that the variational derivation

of the time-dependent SKS equations in [8] is not valid due

to an ill-defined action functional proposed there. A non-

variational treatment would also encounter difficulties,

since in this case, the SKS system would permit one to

reproduce, but not to predict the exact electron density.

Two contributions involving the present authors [23, 24]

have been motivated by the criticism in [10] of the RG

work. Both of the contributions accept the challenges of the

RG proof, but do not require one to abandon the RG

conclusion nonetheless. Let us start by summarizing the

content of [23], because this is very specifically focused on

time-dependent theory, whereas [24], though also moti-

vated by the challenges in [10], is basically dealing with

time-independent DFT.

2.1 Solvable example of a family of two-electron

model atoms with general inter-fermion

interaction: dynamical generalization

As brief background to the above example, Holas, Howard

and March (HHM) [25], obtained analytical solutions for

ground-state properties of a whole family of two-electron

spin-compensated harmonically confined members char-

acterized by a given interfermionic potential energy u(r12)

(see also [26, 27]). In [23], a start is made on the dynamic

generalization of the harmonic external potential. In the

above context, a simplified expression is obtained for the

time-dependent electron density for arbitrary inter-particle

correlation, which is completely determined by a one-

dimensional non-interacting Hamiltonian. Such a con-

struction is generally possible which has been shown by

Qian and Sahni [13, 14], but it also follows the harmonic

potential theorem from [28, 29] for this specific example.

Furthermore, for the simplest case, the Moshinsky atom

[30], where the interaction u(r12) is also harmonic, a closed

solution for the Fourier transform of the density, namely

the time-dependent atomic scattering factor, is found.

To summarize the essence of the time-dependent density

n(r,t) calculation in [23], from the above model, we take

the special but nevertheless important case of a system

which is in its ground-state at t = 0. After generalizing the

static separation of center of mass (CM) and relative

motion (RM) to the dynamic example under consideration,

the above assumption at t = 0 leads to the square of the

CM wave function as the simple Gaussian form

jwCM;3D
000 ðc; tÞj2 ¼ 1

a3
CMðtÞp3=2

exp � c2

a2
CMðtÞ

� �
; ð3Þ

where the time dependence is determined by the length

scale aCM(t) of the oscillator.

For the Moshinsky example [30], the time dependent

atomic scattering factor f(k,t), defined by

f ðk; tÞ ¼
Z

nðr; tÞeikrdr; ð4Þ

is the convenient tool. The total scattering factor turns out,

for uðr12Þ ¼ �1
2
Kr2

12; to have the form

fKtotðk; tÞ ¼ 2fCMðk;mcm
_/ðtÞÞfCMðk=2; ~mcm

_~/ðtÞÞ: ð5Þ

where aCM(t) entering Eq. 3 is related to mcm
_/ðtÞ in Eq. 5

by

aCMðtÞ ¼
1

mcm
_/ðtÞ

: ð6Þ

Or more generally, the dynamic generalization of the static

HHM density is obtained in [23] in terms of the time-

dependent relative motion wave function as

nðr; tÞ ¼ 8ffiffiffi
p
p expð� r2

a2
CMðtÞ

Þ

�
Z1

0

dy y2 expð�y2

4
Þ wRM;3D

000 ðaCMðtÞy; tÞ
�� ��2

� sinhðry=aCMðtÞÞ
ðry=aCMðtÞÞ

: ð7Þ

Though this is an admittedly simplistic two-electron

correlated time-dependent problem, the time-dependent

density n(r,t) can be got via a one-body time-dependent

potential V(r,t), thereby supporting the original RG

assertion. There is no conflict either, we hasten to add,

with the Schirmer–Dreuw conclusions. These authors, in

spite of questioning the RG derivation [8] of the SKS

equations, nowhere claim to have disproved this important

assertion! On the contrary, an alternative proof is provided

in [31] that the mapping is indeed valid.

To conclude this sub-section, we stress that a correlated

two-electron example proposed in the static limit in [25]

has been solved exactly in the dynamic generalization in

which the system is in its ground state at time t = 0. In

particular, Eq. 7 allows the time-dependent density n(r,t)

of the correlated dynamical problem to be reduced to the

single-particle problem of calculating, probably numeri-

cally, from a one-body time-dependent Schrödinger equa-

tion, the relative motion wave function w000
RM,3D. This wave

function, though calculated from a one-body equation,
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involves the sum of the harmonic confinement potential

and the interparticle potential energy u. Having obtained

the exact density, also the generating SKS potential may be

obtained by a straightforward, but numerically non-trivial,

inversion of the SKS equations in this two-electron case

[32, 33]. The one-to-one correspondence of densities and

potentials in the non-interacting case can hence be verified

quite explicitly for this specific example.

2.2 Linear response theory and its inversion

Since the comments [24] are basically time-independent,

we shall defer these to follow a brief discussion of the

important linear response function in time-dependent the-

ory, already to the forefront in the discussion in [1, 2]. For

the non-interacting SKS system generated by potential

V(r,t) with first order self-consistent change DV(r,t), with

corresponding response function vs(r,t,r0,t0), we have, for

the density change Dn(r,t), the formal result

Dnðr; tÞ ¼
Z

dt0
Z

dr0vsðr; t; r0; t0ÞDVðr0; t0Þ: ð8Þ

Here, the first order change DV in the (now time-

dependent) SKS potential is given by

DVðr; tÞ ¼ Vextðr; tÞ þ
Z

dr0
Dnðr0; tÞ
jr� r0j

þ
Z

dt0
Z

dr0fxcðr; t; r0; t0ÞDnðr0; t0Þ; ð9Þ

where fxc is the as yet unknown, exchange-correlation

kernel [34, 35].

In this last cited references by Gross and coworkers, the

issue of causality was first raised, which was also taken up

later by Amusia and Shaginyan [36, 37] and Harbola [38–

40]. The question posed is quite general: namely whether

the potential depends on the density in a causal manner.

This, we believe, is another question important to the

foundations of TDDFT under discussion here.

The causality issue is important in its own right, but has

also implications for the variational formulation of

TDDFT, The action principle proposed by Runge and

Gross [8] leads to a symmetric and hence unexpected non-

causal form of the inverse of the response function v,

giving rise to what has been termed the symmetry-causality

paradox (see also [41]). Different reformulations of the

action principle have appeared in the literature, e.g., [42,

43], up to a recent contribution by Vignale in which the

principle of least action in its conventional form is aban-

doned [44].

Returning to the question of causality, we follow the

treatment of Amusia and Shaginyan [37] who wrote

the external potential in terms of the density, by invoking

the many-body linear response function v (in contrast to the

one-body vs used in Eq. 8 above). With the external

potential Vext(r,t) one can write

Dnðr; tÞ ¼
Z

dt0
Z

dr0vðr; t; r0; t0ÞVextðr0; t0Þ: ð10Þ

In [37], it is assumed that Eq. 10 can be changed to the

Volterra integral equation (see also [40]):

1

KðtÞ
o2DnðtÞ

ot2
¼ VextðtÞ þ

Z
dt0

1

KðtÞ
o2vðt; t0Þ

ot2
Vextðt0Þ; ð11Þ

where the spatial variables are omitted for clarity of

notation. The function K(t) entering Eq. 11 is defined by

[37]

KðtÞ ¼ ovðt; t0Þ
ot0

����
t¼t0
: ð12Þ

The solution of Eq. 11 has the form [37, 40]

VextðtÞ ¼
1

KðtÞ
o2DnðtÞ

ot2
þ
Z

dt0Rðt; t0Þ 1

Kðt0Þ
o2Dnðt0Þ

ot02
; ð13Þ

where R(t,t0) vanishes for t \ t0. Harbola [40] argues from

the above treatment that while the density depends on the

potential in a causal manner, the reverse is not true, leaving

no room for a symmetry-causality paradox. On the other

side, Amusia and Shaginyan [36, 37] as well as Cohen and

Wasserman [41] provide arguments that causal inverse

response functions indeed exist. Our present contention is

that all-important for a decisive answer to the causality

question resides in the mathematical properties of Eq. 13.

This is an important future area therefore for rigorous

mathematical physics.

2.3 Two further comments pertaining

to the Schirmer–Dreuw study

At this point, we return to the comments of Holas et al.

[24] on the Schirmer–Dreuw study [10]. As already men-

tioned above, in [24], the two particular subjects tackled

are concerned with the original, time-independent DFT but

have implications also for the time-dependent generaliza-

tion. In the present section, we merely summarize the

relevant points in [24] for the present context.

The first focus of [24] was to answer in a positive

fashion a question posed in [10]. Whether a local operator

can be reconstructed from knowledge of its particle-hole

(p-h) matrix elements when the number of particle states

exceeds one is the essence of the question. It arises in the

context of a linear response treatment within TDDFT, in

which only p-h matrix elements of the perturbing operator

appear in the relevant equations, although an exact many-

body approach requires also the knowledge of p-p and h-h

elements. It turns out that there is no conflict with the

exactness of TDDFT due to this apparent loss of
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information [10]. Schirmer and Dreuw formulate and prove

the theorem that a local (multiplicative) operator u = u(r)

is uniquely determined to within a constant by its p-h and

h-p matrix elements with respect to a complete one-particle

basis and any partitioning of that basis into occupied and

unoccupied one-particle orbitals. But in answer to the

question to whether it is possible to reconstruct a local

operator if only its p-h matrix elements are given, in [10], it

is remarked that it seems not possible except for a special

case when the number of occupied particle states (n) equals

one. It is stressed by Holas et al. [24] that there is a positive

answer for any n given in Sect. III of the work of Holas and

Cinal [25].

As a second focus arising from the work in [10], Holas

et al. [24] refer to the differential equation satisfied by the

density amplitude nðrÞ1=2; involving the concept of the

Pauli potential. While conceptually satisfying, in [24],

some reasons are set out why the implementation of such a

radical Kohn–Sham scheme [10] is presently hardly com-

putationally competitive with that based on SKS orbitals.

Being numerically demanding already for the static case,

we expect the computational scheme discussed by Schir-

mer and Dreuw to be even more involved in the full time-

dependent case.

3 The differential virial theorem in time-dependent

theory

We turn next to an important result for DFT: namely the

differential virial theorem (DVT). Following the earlier

study of March and Young [45] on the idempotent Dirac

density matrix via its equation of motion, which led them

in one-dimension to a result which they termed the dif-

ferential form of the virial theorem, Holas and March [46]

some four decades later established the DVT in three

dimensions with full account also taken of electron–elec-

tron interactions. Reference [46] has a fairly direct gene-

ralization to time-dependent theory [13–15, 40] and leads

to the result (see also [1]):

o2nðr; tÞ
ot2

¼ �1

4
r4nðr; tÞ þ rzðr; tÞ

þ 2r
Z

dr0n2ðr; r0; tÞruðr; r0Þ

þ r nðr; tÞrVextðr; tÞ½ �: ð14Þ

Here n2(r,r0,t) is the pair density, u(r,r0) is the electron–

electron repulsion potential energy, while z(r,t) is a vector

field defined from the kinetic energy density tensor tab(r,t)

following Holas and March [46]. To be a little more

specific, Eq. 14 is, in essence a combination of the DVT

and the continuity equation relating density n(r,t) and

current density j(r,t), namely

onðr; tÞ
ot

þrjðr; tÞ ¼ 0; ð15Þ

the latter being already invoked in the early work of March

and Tosi [1] on TDDFT. What we want to stress is that

Eq. 14 can be employed at least in principle to construct

the applied (external) potential from the density n(r,t) plus

the initial conditions, a matter already touched on in Sect.

2.1. Prerequisites for such a construction are accurate

approximations for the kinetic energy density tensor and

the correlated pair density. Efforts to obtain the latter in

terms of first-order density matrices [47], should be very

useful in this respect.

Rewriting Eq. 14 for the non-interacting SKS system,

we have

o2nðr; tÞ
ot2

¼ �1

4
r4nðr; tÞ þ rzsðr; tÞ þ r nðr; tÞrVðr; tÞ½ �;

ð16Þ

which requires only the knowledge of non-interacting

vector field zs(r,t) [14] to extract the Kohn–Sham potential

V(r,t) from a given density n(r,t). This should be helpful in

cases where direct inversion of the Kohn–Sham equations

is impossible (cf. Sect. 2.1).

In order to obtain expressions for the exchange-corre-

lation potential as functional of the density, admittedly, the

pair density n2(r,r0,t) still enters in the subtraction of

Vext(r,t) from V(r,t). In Ref. [46] dealing with the time-

independent problem, the correlated pair density and

kinetic energy density tensor were replaced by their non-

interacting counterparts, which lead after a combination of

the analogues of Eqs. 14 and 16 to an exchange-only

approximation of the exchange-correlation potential

beyond the Slater form. A similar proceeding is expected to

succeed also in the present time-dependent case. As dis-

cussed by Qian and Sahni [13–15] in their derivation of

Eqs. 14 and 16, the combination of the above equations is

also important from a more formal point of view, since it

allows to disentangle several contributions to the

exchange-correlation functional and interpret these in

physical terms.

4 Shortcomings of present calculations by TDDFT

on charge-transfer excitations

It is highly relevant to the foundations of TDDFT that

current usage leads to substantial errors for charge-transfer

excited states [48–50]. Usually, the excitation energies are

severely underestimated. Furthermore, the potential energy

curves of such charge transfer states do not display the

known 1/R dependence along a charge-separation coordi-

nate R [51–53].
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A long-term solution to this problem may well lie in the

use of time-dependent current density functional theory,

which has recently been implemented [54] (see also [1, 3,

55]). It turns out, as discussed in [54] that a correct

description of charge transfer excited states requires non-

locality, and current density functionals have this property.

However, the high computational cost of such a current

density approach raises doubts as to whether this route will

be applicable to large molecules in the foreseeable future.

5 Summary

Serious criticisms of the foundations of TDDFT have

recently been made [10], the focus being on parts of the

Runge–Gross work [8]. The example set out in Sect. 2.1,

and culminating in Eq. 7, shows in an admittedly simple

time-dependent problem with an exact solution, that the

time-dependent density can be correctly calculated from a

one-body time-dependent potential in support of the map-

ping theorem [8].

We stress here again that the mapping theorem is not

challenged in [10]. The major point of the Schirmer–Dreuw

study is rather the claim that the time-dependent Kohn–

Sham approach has no predictive power due to the lack of a

valid variational principle. However, once the time-

dependent density, discussed in some detail in Sects. 2.1

and 2.2 above, is obtained by some other means, and the

exact time-dependent exchange-correlation potential-func-

tional would be known, the exact time-evolution of the

electron density of the interacting system can be repro-

duced by the time-dependent Kohn–Sham equations. Since

this manuscript was completed, a comment [56] and reply

[57] on the Schirmer–Dreuw study [10] have been

published.

Further matters discussed involve questions of the cau-

sality of the potential in TDDFT, first raised by Gross et al.

[34, 35] and subsequently discussed by Amusia and

Shaginyan [36, 37] and Harbola [40], and of the need to

face the additional complications of current density theory

for a specific class of excitations, namely charge-transfer

excited states. This is because of the fundamental need for

non-locality, which is correctly embedded in current den-

sity theory. Questions then arise as to the feasibility of

application of such an approach to large molecules,

because of the high cost.
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